Как умножить три матрицы между собой


Умножение матриц

Каталин Дэвид

Чтобы можно было умножить две матрицы, количество столбцов первой матрицы должно быть равно количеству строк второй матрицы.

Умножаем элементы в строках первой матрицы на элементы в столбцах второй матрицы.

  1. Умножаем элементы первой строки на элементы первого столбца.
    • Умножаем первый элемент первой строки на первый элемент первого столбца.
    • Умножаем второй элемент первой строки на второй элемент первого столбца.
    • Делаем то же самое с каждым элементом, пока не дойдем до конца как первой строки первой матрицы, так и первого столбца второй матрицы.
    • Складываем полученные произведения.
    • Полученный результат будет первым элементом первой строки произведения матриц.
  2. Умножаем элементы первой строки первой матрицы на элементы второго столбца второй матрицы.
    • Умножаем первый элемент первой строки на первый элемент второго столбца.
    • Умножаем второй элемент первой строки на второй элемент второго столбца.
    • Делаем то же самое с каждым элементом, пока не дойдем до конца как первой строки первой матрицы, так и второго столбца второй матрицы.
    • Складываем полученные произведения.
    • Полученный результат будет вторым элементом первой строки произведения матриц.
  3. Применяя тот же самый алгоритм, умножаем элементы первой строки первой матрицы на элементы остальных столбцов второй матрицы. Полученные числа составят первую строку вычисляемой матрицы.
  4. Вторая строка вычисляемой матрицы находится аналогично умножением элементов второй строки первой матрицы на элементы каждого столбца второй матрицы: результаты записываются в новую матрицу после каждого суммирования.
  5. Делаем это с каждой строкой первой матрицы, пока все строки новой матрицы не будут заполнены.

Пример 7
$A= \begin{pmatrix} 1 & 2 & 2\\ 3 & 1 & 1 \end{pmatrix}$
$B=\begin{pmatrix} 4 & 2 \\ 3 & 1 \\ 1 & 5\\ \end{pmatrix}$

Заметим, что матрица A имеет 3 столбца, а матрица B имеет 3 строки, значит, их можно перемножить.

$A \cdot B=$ $\begin{pmatrix} \color{red}1 &\color{blue}2 & \color{green}2\\ \color{red}3 &\color{blue}1 & \color{green}1 \end{pmatrix} \begin{pmatrix} \color{red}4 & \color{red}2 \\ \color{blue}3 & \color{blue}1 \\ \color{green}1 & \color{green}5 \end{pmatrix}=$ $\begin{pmatrix} \color{red}{1\cdot4}+\color{blue}{2\cdot3}+\color{green}{2\cdot1} & \color{red}{1\cdot2}+\color{blue}{2\cdot1}+\color{green}{2\cdot5}\\ \color{red}{3\cdot4}+\color{blue}{1\cdot3}+\color{green}{1\cdot1} & \color{red}{3\cdot2}+\color{blue}{1\cdot1}+\color{green}{1\cdot5} \end{pmatrix}=$ $\begin{pmatrix} 12 & 14\\ 16 & 12\\ \end{pmatrix}$

$B \cdot A = \begin{pmatrix} \color{red}4 &\color{blue}2 \\ \color{red}3 & \color{blue}1 \\ \color{red}1 & \color{blue}5 \end{pmatrix} \begin{pmatrix} \color{red}1 &\color{red}2 & \color{red}2\\ \color{blue}3 &\color{blue}1 & \color{blue}1 \end{pmatrix}=$

$\begin{pmatrix} \color{red}{4\cdot1}+\color{blue}{2\cdot3} & \color{red}{4\cdot2}+\color{blue}{2\cdot1} & \color{red}{4\cdot2}+\color{blue}{2\cdot1}\\ \color{red}{3\cdot1}+\color{blue}{1\cdot3} & \color{red}{3\cdot2}+\color{blue}{1\cdot1} & \color{red}{3\cdot2}+\color{blue}{1\cdot1}\\ \color{red}{1\cdot1}+\color{blue}{5\cdot3} & \color{red}{1\cdot2}+\color{blue}{5\cdot1} & \color{red}{1\cdot2}+ \color{blue}{5\cdot1} \end{pmatrix} =$ $\begin{pmatrix} 10 & 10 & 10 \\ 6 & 7 & 7 \\ 16 & 7 & 7 \end{pmatrix}$

Заметим, что $A \cdot B \neq B \cdot A$

Пример 8
$A= \begin{pmatrix} 5 & 2 \\ 3 & 1 \end{pmatrix} B= \begin{pmatrix} 4 & 6 \\ 5 & 2 \end{pmatrix}$

$A \cdot B = \begin{pmatrix} \color{red}5 & \color{blue}2 \\ \color{red}3 & \color{blue}1 \end{pmatrix} \cdot \begin{pmatrix} \color{red}4 & \color{red}6 \\ \color{blue}5 & \color{blue}2 \end{pmatrix} =\begin{pmatrix} \color{red}{5\cdot4}+\color{blue}{2\cdot5} & \color{red}{5\cdot6}+\color{blue}{2\cdot2} \\ \color{red}{3\cdot4}+\color{blue}{1\cdot5} & \color{red}{3\cdot6}+\color{blue}{1\cdot2} \end{pmatrix} =$ $\begin{pmatrix} 30 & 34\\ 17 & 20 \end{pmatrix}$

$B \cdot A= \begin{pmatrix} \color{red}4 & \color{blue}6 \\ \color{red}5 & \color{blue}2 \end{pmatrix} \cdot \begin{pmatrix} \color{red}5 & \color{red}2 \\ \color{blue}3 & \color{blue}1 \end{pmatrix} =\begin{pmatrix} \color{red}{4\cdot5}+\color{blue}{6\cdot3} & \color{red}{4\cdot2}+\color{blue}{5\cdot1} \\ \color{red}{5\cdot5}+\color{blue}{2\cdot3} & \color{red}{5\cdot2}+\color{blue}{2\cdot1} \end{pmatrix} =$ $\begin{pmatrix} 38 & 14\\ 31 & 12 \end{pmatrix}$

Опять-таки $A \cdot B \neq B \cdot A$.

Пример 9
$A= \begin{pmatrix} 1 & 4 & 3 \\ 2 & 1 & 5\\ 3 & 2 & 1 \end{pmatrix} B= \begin{pmatrix} 5 & 2 & 1 \\ 4 & 3 & 2 \\ 2 & 1 & 5 \end{pmatrix}$

$A \cdot B = \begin{pmatrix} \color{red}{1} & \color{blue}{4} & \color{green}{3} \\ \color{red}{2} & \color{blue}{1} & \color{green}{5}\\ \color{red}{3} & \color{blue}{2} & \color{green}{1} \end{pmatrix} \cdot \begin{pmatrix} \color{red}{5} & \color{red}{2} & \color{red}{1} \\ \color{blue}{4} & \color{blue}{3} & \color{blue}{2} \\ \color{green}{2} & \color{green}{1} & \color{green}{5} \end{pmatrix}=$

$\begin{pmatrix} \color{red}{1\cdot5} + \color{blue}{4\cdot4} + \color{green}{3\cdot2} & \color{red}{1\cdot2} + \color{blue}{4\cdot3} + \color{green}{3\cdot1} & \color{red}{1\cdot1} + \color{blue}{4\cdot2} + \color{green}{3\cdot5} \\ \color{red}{2\cdot5} + \color{blue}{1\cdot4} + \color{green}{5\cdot2} & \color{red}{2\cdot2} + \color{blue}{1\cdot3} + \color{green}{5\cdot1} & \color{red}{2\cdot1} + \color{blue}{1\cdot2} + \color{green}{5\cdot5}\\ \color{red}{3\cdot5} + \color{blue}{2\cdot4} + \color{green}{1\cdot2} & \color{red}{3\cdot2} + \color{blue}{2\cdot3} + \color{green}{1\cdot1} & \color{red}{3\cdot1} + \color{blue}{2\cdot2} + \color{green}{1\cdot5} \end{pmatrix}=$
$=\begin{pmatrix} 27 & 17 & 24\\ 24 & 12 & 29\\ 25 & 13 & 12 \end{pmatrix}$

$B \cdot A = \begin{pmatrix} \color{red}{5} & \color{blue}{2} & \color{green}{1}\\ \color{red}{4} & \color{blue}{3} & \color{green}{2}\\ \color{red}{2} & \color{blue}{1} & \color{green}{5} \end{pmatrix} \cdot \begin{pmatrix} \color{red}{1} & \color{red}{4} & \color{red}{3} \\ \color{blue}{2} & \color{blue}{1} & \color{blue}{5} \\ \color{green}{3} & \color{green}{2} & \color{green}{1} \end{pmatrix}=$ $\begin{pmatrix} \color{red}{5\cdot1} + \color{blue}{2\cdot2} + \color{green}{1\cdot2} & \color{red}{5\cdot4} + \color{blue}{2\cdot1} + \color{green}{1\cdot2} & \color{red}{5\cdot3} + \color{blue}{2\cdot5} + \color{green}{1\cdot1} \\ \color{red}{4\cdot1} + \color{blue}{3\cdot2} + \color{green}{2\cdot3} & \color{red}{4\cdot4} + \color{blue}{3\cdot1} + \color{green}{2\cdot2} & \color{red}{4\cdot3} + \color{blue}{3\cdot5} + \color{green}{2\cdot1}\\ \color{red}{2\cdot1} + \color{blue}{1\cdot2} + \color{green}{5\cdot3} & \color{red}{2\cdot4} + \color{blue}{1\cdot1} + \color{green}{5\cdot2} & \color{red}{2\cdot3} + \color{blue}{1\cdot5} + \color{green}{5\cdot1} \end{pmatrix}=$
$=\begin{pmatrix} 11 & 24 & 26\\ 16 & 23 & 29\\ 19 & 19 & 16 \end{pmatrix}$

Опять-таки $A \cdot B \neq B \cdot A$.

Пример 10
$A= \begin{pmatrix} 5 & 2\\ 3 & 1\\ \end{pmatrix} I_{2}= \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix}$

$A \cdot B = \begin{pmatrix} \color{red}{5} & \color{blue}{2}\\ \color{red}{3} & \color{blue}{1} \end{pmatrix} \cdot \begin{pmatrix} \color{red}{1} & \color{red}{0} \\ \color{blue}{0} & \color{blue}{1} \end{pmatrix} =\begin{pmatrix} \color{red}{5\cdot1}+\color{blue}{2\cdot0} & \color{red}{5\cdot0}+\color{blue}{2\cdot1} \\ \color{red}{3\cdot1}+\color{blue}{1\cdot0} & \color{red}{3\cdot0}+\color{blue}{1\cdot1} \end{pmatrix} = \begin{pmatrix} 5 & 2\\ 3 & 1 \end{pmatrix}$

$B \cdot A = \begin{pmatrix} \color{red}{1} & \color{blue}{0} \\ \color{red}{0} & \color{blue}{1} \end{pmatrix} \cdot \begin{pmatrix} \color{red}{5} & \color{red}{2} \\ \color{blue}{3} & \color{blue}{1} \\ \end{pmatrix} =\begin{pmatrix} \color{red}{1\cdot5}+\color{blue}{0\cdot3} & \color{red}{1\cdot2}+\color{blue}{0\cdot1} \\ \color{red}{0\cdot5}+\color{blue}{1\cdot3} & \color{red}{0\cdot2}+\color{blue}{1\cdot1} \end{pmatrix} = \begin{pmatrix} 5 & 2\\ 3 & 1 \end{pmatrix}$

Заметим, что $A \cdot I_{2} = I_{2} \cdot A=A$.

Пример 11
$A=\begin{pmatrix} 1 & 4 & 3 \\ 2 & 1 & 5\\ 3 & 2 & 1 \end{pmatrix} I_{3}= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$A \cdot B = \begin{pmatrix} \color{red}{1} & \color{blue}{4} & \color{green}{3} \\ \color{red}{2} & \color{blue}{1} & \color{green}{5}\\ \color{red}{3} & \color{blue}{2} & \color{green}{1} \end{pmatrix} \cdot \begin{pmatrix} \color{red}{1} & \color{red}{0} & \color{red}{0} \\ \color{blue}{0} & \color{blue}{1} & \color{blue}{0} \\ \color{green}{0} & \color{green}{0} & \color{green}{1} \end{pmatrix}=$

$\begin{pmatrix} \color{red}{1\cdot1} + \color{blue}{4\cdot0} + \color{green}{3\cdot0} & \color{red}{1\cdot0} + \color{blue}{4\cdot1} + \color{green}{3\cdot0} & \color{red}{1\cdot0} + \color{blue}{4\cdot0} + \color{green}{3\cdot1} \\ \color{red}{2\cdot1} + \color{blue}{1\cdot0} + \color{green}{5\cdot0} & \color{red}{2\cdot0} + \color{blue}{1\cdot1} + \color{green}{5\cdot0} & \color{red}{2\cdot0} + \color{blue}{1\cdot0} + \color{green}{5\cdot1}\\ \color{red}{3\cdot1} + \color{blue}{2\cdot0} + \color{green}{1\cdot0} & \color{red}{3\cdot0} + \color{blue}{2\cdot1} + \color{green}{1\cdot0} & \color{red}{3\cdot0} + \color{blue}{2\cdot0} + \color{green}{1\cdot1} \end{pmatrix}=$
$=\begin{pmatrix} 1 & 4 & 3\\ 2 & 1 & 5\\ 3 & 2 & 1 \end{pmatrix}$

$B \cdot A = \begin{pmatrix} \color{red}{1} & \color{blue}{0} & \color{green}{0} \\ \color{red}{0} & \color{blue}{1} & \color{green}{0}\\ \color{red}{0} & \color{blue}{0} & \color{green}{1} \end{pmatrix} \cdot \begin{pmatrix} \color{red}{1} & \color{red}{4} & \color{red}{3} \\ \color{blue}{2} & \color{blue}{1} & \color{blue}{5} \\ \color{green}{3} & \color{green}{2} & \color{green}{1} \end{pmatrix}=$

$\begin{pmatrix} \color{red}{1\cdot1} + \color{blue}{0\cdot2} + \color{green}{0\cdot2} & \color{red}{1\cdot4} + \color{blue}{0\cdot1} + \color{green}{0\cdot2} & \color{red}{1\cdot3} + \color{blue}{0\cdot5} + \color{green}{0\cdot1} \\ \color{red}{0\cdot1} + \color{blue}{1\cdot2} + \color{green}{0\cdot3} & \color{red}{0\cdot4} + \color{blue}{1\cdot1} + \color{green}{0\cdot2} & \color{red}{0\cdot3} + \color{blue}{1\cdot5} + \color{green}{0\cdot1}\\ \color{red}{0\cdot1} + \color{blue}{0\cdot2} + \color{green}{1\cdot3} & \color{red}{0\cdot4} + \color{blue}{0\cdot1} + \color{green}{1\cdot2} & \color{red}{0\cdot3} + \color{blue}{0\cdot5} + \color{green}{1\cdot1} \end{pmatrix} =$
$=\begin{pmatrix} 1 & 4 & 3\\ 2 & 1 & 5\\ 3 & 2 & 1 \end{pmatrix}$

Опять-таки $A \cdot I_{3} = I_{3} \cdot A = A$.

Примечание:

  1. В общем случае умножение матриц некоммуникативно.
  2. $A\cdot I_{n} = I_{n} \cdot A = A$ для любой матрицы A, имеющей n столбцов.

Матрицы Определитель Ранг матрицы Обратные матрицы Матричные уравнения Системы уравнений Калькуляторы для матриц

Умножение матриц.

Умножение матриц.

Навигация по странице:

  • Умножение матриц
  • Свойства умножения матриц
  • Примеры умножения матриц

Онлайн калькулятор. Умножение матриц.

Определение.

Результатом умножения матрицAm×n и Bn×k будет матрица Cm×k такая, что элемент матрицы C, стоящий в i-той строке и j-том столбце (cij), равен сумме произведений элементов i-той строки матрицы A на соответствующие элементы j-того столбца матрицы B:

cij = ai1 · b1j + ai2 · b2j + . .. + ain · bnj

Замечание.

Две матрицы можно перемножить между собой тогда и только тогда, когда количество столбцов первой матрицы равно количеству строк второй матрицы.


Свойства умножения матриц

  • (A · B) · C= A · (B · C) - произведение матриц ассоциативно;
  • (z · A) · B= z · (A · B), где z - число;
  • A · (B + C) = A · B + A · C - произведение матриц дистрибутивно;
  • En · Anm = Anm · Em= Anm - умножение на единичную матрицу;
  • A · B ≠ B · A - в общем случае произведение матриц не коммутативно.
  • Произведением двух матриц есть матрица, у которой столько строк, сколько их у левого сомножителя, и столько столбцов, сколько их у правого сомножителя.

Примеры задач на умножение матриц

Пример 1.

Найти матрицу C равную произведению матриц A =

4290

и B =

31-34

Решение:

С = A · B =

4290

·

31-34

=

612279

Элементы матрицы C вычисляются следующим образом:

c11 = a11·b11 + a12·b21 = 4·3 + 2·(-3) = 12 - 6 = 6

c12 = a11·b12 + a12·b22 = 4·1 + 2·4 = 4 + 8 = 12

c21 = a21·b11 + a22·b21 = 9·3 + 0·(-3) = 27 + 0 = 27

c22 = a21·b12 + a22·b22 = 9·1 + 0·4 = 9 + 0 = 9

Пример 2

Найти матрицу C равную произведению матриц A =

21-304-1

и B =

5-16-307

.

Решение:

C = A · B =

21-304-1

·

5-16-307

=

7-219-153-1823-417

Элементы матрицы C вычисляются следующим образом:

c11 = a11·b11 + a12·b21 = 2·5 + 1·(-3) = 10 - 3 = 7

c12 = a11·b12 + a12·b22 = 2·(-1) + 1·0 = -2 + 0 = -2

c13 = a11·b13 + a12·b23 = 2·6 + 1·7 = 12 + 7 = 19

c21 = a21·b11 + a22·b21 = (-3)·5 + 0·(-3) = -15 + 0 = -15

c22 = a21·b12 + a22·b22 = (-3)·(-1) + 0·0 = 3 + 0 = 3

c23 = a21·b13 + a22·b23 = (-3)·6 + 0·7 = -18 + 0 = -18

c31 = a31·b11 + a32·b21 = 4·5 + (-1)·(-3) = 20 + 3 = 23

c32 = a31·b12 + a32·b22 = (4)·(-1) + (-1)·0 = -4 + 0 = -4

c33 = a31·b13 + a32·b23 = 4·6 + (-1)·7 = 24 - 7 = 17

Онлайн калькуляторы с матрицами.

Упражнения с матрицами.

Умножение матриц — 2x2, 3x3

Умножение матриц или умножение матриц — одна из операций, которые можно выполнять над матрицами в линейной алгебре. Умножение матрицы A на матрицу B возможно, когда обе заданные матрицы A и B совместимы. Умножение матриц — это бинарная операция, которая дает матрицу из двух заданных матриц.

Умножение матриц было впервые введено в 1812 году французским математиком Жаком Филиппом Мари Бине для представления линейных карт с использованием матриц. Давайте разберемся с правилом умножения матриц в следующих разделах.

1. Что такое умножение матриц?
2. Как умножать матрицы?
3. Правила умножения матриц
4. Формула умножения матриц 2x2
5. Формула умножения матриц 3x3
6. Свойства умножения матриц
7. Часто задаваемые вопросы по умножению матриц

Что такое умножение матриц?

Умножение матриц — это бинарная операция, результатом которой также является матрица при умножении двух матриц. В линейной алгебре умножение матриц возможно только тогда, когда матрицы совместимы. В общем случае умножение матриц, в отличие от арифметического, не является коммутативным, а это означает, что умножение матриц A и B, заданных как AB, не может быть равно BA, т. е. AB ≠ BA. Поэтому порядок умножения для умножения матриц важен.

Две матрицы A и B называются совместимыми, если количество столбцов в A равно количеству строк в B. Это означает, что если A — матрица порядка m×n, а B — матрица порядка n× p, то можно сказать, что матрицы A и B совместимы.

Предположим, у нас есть две матрицы A и B, произведение матрицы A на матрицу B можно представить как (AB). Это означает, что результирующая матрица для умножения любой матрицы m × n «A» на матрицу «B» размера n × p может быть представлена ​​как матрица «C» порядка m × p. Давайте разберемся с этой концепцией подробно в следующем разделе.

Как умножать матрицы?

Мы можем понять общий процесс умножения матриц с помощью метода: «Первые строки умножаются на столбцы (элемент за элементом), а затем строки заполняются. Умножение матриц можно выполнить, используя следующие шаги:

  • Шаг 1:  Убедитесь, что количество столбцов в матрице 1 st равно количеству строк в матрице 2 nd (совместимость матриц).
  • Шаг 2: Умножьте элементы строки i th первой матрицы на элементы столбца j th второй матрицы и сложите произведения. Это будет элемент, который находится в i -й строке и j -м столбце результирующей матрицы.
  • Шаг 3:  Разместите добавленные товары на соответствующих позициях.

Давайте лучше разберемся с этими шагами умножения матриц на примере.

Пример: Умножьте приведенные ниже матрицы, чтобы найти их произведение \( \begin{pmatrix}
1 и 2 \
3 и 4 \ 5 и 1 \
\end{pmatrix} \text{and}\begin{pmatrix}
2\\
4\
\end{pmatrix}
\).

Решение: Данные матрицы имеют порядок 3×2 и 2×1 . Таким образом, t заданные матрицы совместимы, мы можем выполнить умножение матриц, и матрица произведения будет иметь порядок 3×1.

\(\begin{pmatrix}
1 и 2 \
3 и 4 \ 5 и 1 \
\end{pmatrix}.\begin{pmatrix}
2\\
4\
\end{pmatrix}\\\\
= \begin{pmatrix}
(1\times2)+(2\times4) \\
(3\times2)+(4\times4) \\ (5\times2)+(1\times4) \\
\end{pmatrix} \\\\ = \begin{pmatrix}
2+8 \\
6+16\10+4\
\end{pmatrix}
\\\\
= \begin{pmatrix}
10\
22\14\
\end{pmatrix}\)

Следовательно, матрица произведения равна \(\begin{pmatrix}
10\
22\14\
\end{pmatrix}
\)

В результирующей матрице видно, что первый элемент первой строки получается умножением элементов первой строки первой матрицы на соответствующие элементы первого столбца второй матрицы и последующим сложением. т. е., вообще говоря, найти элемент в i -я строка и j -й столбец в матрице произведения,

  • Возьмите элементы i -й строки первой матрицы.
  • Возьмем элементы j -го -го столбца второй матрицы.
  • Умножьте соответствующие элементы.
  • Добавить все продукты.

Правила умножения матриц

Как мы изучили, две матрицы можно перемножать только тогда, когда они совместимы, а это означает, что для существования умножения матриц количество столбцов в первой матрице должно быть равно количеству строк во второй матрице, в приведенном выше случай 'н'. Если A — матрица порядка m×n, а B — матрица порядка n×p, то порядок произведения матриц равен m×p.

Примеры:

а) Умножение матрицы 4 × 3 на матрицу 3 × 4 верно и дает матрицу порядка 4 × 4

б) Матрица 7 × 1 и матрицы 1 × 2 совместимый; произведение дает матрицу 7 × 2.

c) Умножение матрицы 4 × 3 на матрицу 2 × 3 НЕВОЗМОЖНО.

Формула умножения матриц 2x2

Процесс одинаков для матрицы любого порядка. Умножаем элементы каждой строки первой матрицы на элементы каждого столбца второй матрицы (поэлементно), как показано на рисунке. Наконец, мы добавляем продукты. Результатом произведения двух матриц 2x2 снова является матрица 2x2.

Формула умножения матриц 3x3

Матрица 3x3 Умножение можно выполнить с помощью формулы умножения матриц, так как любые две матрицы 3x3 совместимы. Процесс точно такой же для матрицы любого порядка. Результатом произведения двух матриц 3x3 снова является матрица 3x3.

Здесь матрицы имеют одинаковые размеры, поэтому результирующая матрица также имеет одинаковую размерность 3×3.

Пример:

\(\left(\begin{array}{rrr}
1&2&-1\
3 & 2 & 0 \
-4 и 0 и 2
\end{массив}\right)\) \(\left(\begin{массив}{rrr}
3 и 4 и 2 \
0&1&0\
-2 и 0 и 1
\end{массив}\right)\)

= \(\left(\begin{массив}{rrr}
1(3)+2(0)+(-1)(-2) и 1(4)+2(1)+(-1)0 и 1(2)+2(0)+(-1)( 1)\
3(3)+2(0)+(0)(-2) и 3(4)+2(1)+(0)0 и 3(2)+2(0)+(0)(1) \ \
-4(3)+0(0)+(2)(-2) и -4(4)+0(1)+(2)0 и -4(2)+0(0)+(2)( 1)\
\end{массив}\right)\)

= \(\left(\begin{массив}{rrr}
5 и 6 и 1 \
9 и 14 и 6 \
-16&-16&-6\
\конец{массив}\справа)\)

Свойства умножения матриц

Существуют определенные свойства операции умножения матриц в линейной алгебре в математике. Эти свойства приведены ниже,

  • Некоммутативный: Умножение матриц является некоммутативным, т. е. для умножения двух матриц A и B AB ≠ BA.
  • Дистрибутивность: Свойство дистрибутивности можно применять при перемножении матриц, т. е. A(B + C) = AB + BC, учитывая, что A, B и C совместимы.
  • Произведение со скаляром: Если произведение матриц A и B, AB определено, то c(AB) = (cA)B = A(Bc), так что c является скаляром.
  • Транспонирование: Транспонирование произведения матриц A и B может быть задано как (AB) T = B T A T , где T обозначает транспонирование.
  • Комплексное сопряжение: Если A и B являются комплексными элементами, то (AB) * = B * A *
  • Ассоциативность: Умножение матриц является ассоциативным. Для трех матриц A, B и C, произведения (AB)C и A(BC) определены, тогда (AB)C = A(BC).
  • Определитель:  Определитель произведения матриц есть не что иное, как произведение определителей отдельных матриц. т. е. det (AB) = det A × det B,

Нестандартное мышление:

  • Используя приведенные ниже матрицы, проверьте, является ли умножение матриц коммутативным или нет.
    \( \begin{pmatrix}
    1 & 0 \\\
    2 и 4 \
    \end{pmatrix} \text{and}\begin{pmatrix}
    6 и 8 \\\
    4 и 3 \
    \end{pmatrix}
    \)
  • Является ли умножение матриц ассоциативным?

Важные замечания по умножению матриц:

  • Для умножения матриц данные матрицы должны быть совместимы.
  • Порядок матрицы произведения можно получить по следующему правилу:
    Если A — матрица порядка m×n, а B — матрица порядка n×p, то порядок матрицы произведения равен m×p.
  • Умножение матриц указывает на умножение строк на столбцы.

Похожие темы:

  • Калькулятор умножения матриц
  • Матричный калькулятор
  • Калькулятор сложения матриц

Часто задаваемые вопросы по умножению матриц

Что такое умножение матриц в линейной алгебре?

Умножение матриц — одна из бинарных операций, которые можно применять к матрицам в линейной алгебре. Чтобы умножить две матрицы A и B, количество столбцов в матрице A должно быть равно количеству строк в матрице B. ⇒AB существует.

Как перемножать матрицы 3x3?

Матрицы 3x3 в математике можно умножать путем умножения строк первой матрицы на столбцы второй матрицы для получения соответствующих элементов матрицы произведения.

Что такое формула умножения матриц?

Формула умножения матриц используется для выполнения умножения матриц в целом. Например, для матриц 3x3 формула выглядит следующим образом:

Можно ли перемножать матрицы порядка 2x3 и 2x2?

Нет, мы не можем умножать матрицы 2x3 и 2x2, потому что для умножая матрицы, две матрицы должны быть совместимы. Поскольку количество столбцов в первой матрице (3) не равно количеству строк во второй матрице (2), мы не можем выполнить умножение матриц для этого случая.

Какова цель умножения матриц?

Умножение матриц важно для облегчения вычислений в линейной алгебре и используется для представления линейных карт. Это важный инструмент во многих областях математики, а также в прикладной математике, статистике, физике, экономике и технике.

Чему равно произведение матриц порядков 2×1 и 2×2?

Нет, их нельзя перемножить, так как эти матрицы несовместимы. Количество столбцов первой матрицы не равно количеству строк второй матрицы.

Когда возможно умножение матриц?

Умножение матриц возможно, только если матрицы совместимы, т. е. умножение матриц допустимо только в том случае, если количество столбцов первой матрицы равно количеству строк второй матрицы.

Всегда ли умножение матриц является коммутативным?

Умножение матриц, в отличие от арифметического умножения, не является коммутативным. Это означает, что порядок умножения матриц имеет значение.

Всегда ли определено умножение матриц?

Умножение матриц возможно только в том случае, если матрицы совместимы. Чтобы существовало умножение матриц, количество столбцов в первой матрице должно быть равно количеству строк во второй матрице

Как перемножить две матрицы вместе

Получите максимум от просмотра этой темы в своем текущем классе. Выберите свой курс сейчас .

Intros

Начало просмотра

Уроки
  1. Умножение матрицы на матрицу.

    DOT

    Примеры
    . из следующих упорядоченных nnn-кортежей:
    1. a⃗=(2,4,6) \vec{a}=(2,4,6) a=(2,4,6) и b⃗=(1,3,5)\vec{b}= (1,3,5)b=(1,3,5)
    2. a⃗=(1,7,5,3) \vec{a}=(1,7,5,3) a=(1, 7,5,3) и b⃗=(−2,3,6,1)\vec{b}=(-2,3,6,1)b=(−2,3,6,1)
    3. a⃗=(1,2) \vec{a}=(1,2) a=(1,2) и b⃗=(3,5)\vec{b}=(3,5)b=(3,5 )
    4. a⃗=(7,−2,−1,4) \vec{a}=(7,-2,-1,4) a=(7,−2,−1,4) и b⃗= (1,1,2,2)\vec{b}=(1,1,2,2)b=(1,1,2,2)
  2. Матрицы умножения
    Умножьте следующие матрицы:






  3. Multiplying matrices with different dimensions
    Multiply the following matrices:
Free to Join!

StudyPug — это платформа помощи в обучении, охватывающая математику и естественные науки с 4 класса до второго курса университета. Наши видеоуроки, неограниченное количество практических задач и пошаговые объяснения обеспечат вам или вашему ребенку всю необходимую помощь для освоения концепций. Кроме того, это весело — с достижениями, настраиваемыми аватарами и наградами, которые поддерживают вашу мотивацию.

  • Учащиеся
  • Родители

Только новые статьи

Введите свой e-mail

Видео-курс

Blender для новичков

Ваше имя:Ваш E-Mail: